Coarsening in surface growth models without slope selection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 L77
(http://iopscience.iop.org/0305-4470/33/8/102)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:46

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Coarsening in surface growth models without slope selection*

Paolo Politi $\dagger \ddagger \S$ and Alessandro Torcini \dagger
\dagger Istituto Nazionale per la Fisica della Materia, Unità di Firenze, L go E Fermi 2, 50125 Florence, Italy
\# Dipartimento di Fisica, Università degli Studi di Firenze, L go E Fermi 2, 50125 Florence, Italy § Fachbereich Physik, Universität GH Essen, 45117 Essen, Germany
E-mail: politi@fi.infn.it and torcini@fi.infn.it
URL:http://torcini.de.unifi.it/~torcini

Received 20 December 1999

Abstract

We study conserved models of crystal growth in one dimension ($\partial_{t} z(x, t)=$ $\left.-\partial_{x} j(x, t)\right)$ which are linearly unstable and develop a mound structure whose typical size L increases in time $\left(L \sim t^{n}\right)$. If the local slope ($m=\partial_{x} z$) increases indefinitely, n depends on the exponent γ characterizing the large- m behaviour of the surface current $j\left(j \sim 1 /|m|^{\gamma}\right): n=\frac{1}{4}$ for $1 \leqslant \gamma \leqslant 3$ and $n=(1+\gamma) /(1+5 \gamma)$ for $\gamma>3$.

The conserved dynamics of a solid surface growing under the action of an external flux of particles is described by the continuum equation

$$
\begin{equation*}
\partial_{t} z(x, t)=-\partial_{x} j(x, t)+\delta F(x, t) \tag{1}
\end{equation*}
$$

where $z(x, t)$ is the local height of the surface in a comoving frame (so that the average value \bar{z} is set to 0) and $\delta F(x, t)$ is the shot noise.

Thermodynamic and kinetic mechanisms contribute to j and its actual expression depends on the details of the growth process. Here we are interested in the growth of a high-symmetry surface by molecular beam epitaxy, where the instability has a purely kinetic origin: the reduced interlayer diffusion [1]. Nonetheless, our treatment will be as general as possible.

A wide class of models is described by the current

$$
\begin{equation*}
j=K m^{\prime \prime}(x)+j_{\mathrm{ES}}(m) \tag{2}
\end{equation*}
$$

where $m=\partial_{x} z$ is the local slope. The first term generally describes a thermally activated relaxation of the surface, but kinetic mechanisms can also contribute to K [2].

The second term is responsible for the instability and its origin is an asymmetry in the sticking process of an adatom to a step (the Ehrlich-Schwoebel (ES) effect): sticking from the upper terrace is hindered and this implies an uphill current [3] which is called the ES current (j_{ES}). Also, other (generally stabilizing) processes can contribute to j_{ES} and this explains the different expressions j_{ES} may take [4].

Whatever these processes are, j_{ES} is linear in m at small slopes ($j_{\mathrm{ES}} \sim \nu m$) and therefore in the early stages of the growth it prevails on the first term $\left(\mathrm{Km}^{\prime \prime}\right)$ at sufficiently large wavelengths.

[^0]This means that the linear stability of the flat surface will be decided by the sign of v, a positive one meaning instability. In fact, in the limit $m \rightarrow 0$ we have

$$
\begin{equation*}
\partial_{t} z=-K \partial_{x}^{4} z-v \partial_{x}^{2} z \tag{3}
\end{equation*}
$$

whose solution is $z(x, t)=\exp \left(\omega_{q} t\right) \cos (q x)$ with $\omega_{q}=v q^{2}-K q^{4}$. An uphill current means that j_{ES} has the same sign as the slope, so v is positive and the flat surface is unstable ($\omega_{q}>0$) against modulations of wavevector smaller than $\bar{q}=\sqrt{v / K}$; the instability appears after a typical time of order $t^{*} \simeq\left(v \bar{q}^{2}\right)^{-1}=K / v^{2}$.

The later evolution of the surface depends on the nonlinear form of the unstable current $j_{\mathrm{ES}}(m)$. By taking the spatial derivative of (1), we obtain

$$
\begin{equation*}
\partial_{t} m=\partial_{x}^{2}(-j)+\partial_{x}(\delta F) \tag{4}
\end{equation*}
$$

and a parallel with a phase-ordering process is easily made, once we remark that the current can be obtained by a pseudo free energy \mathcal{F} :
$j=-\frac{\delta \mathcal{F}}{\delta m} \quad \mathcal{F}[m]=\int \mathrm{d} x\left[\frac{K}{2}\left(\partial_{x} m\right)^{2}+V(m)\right] \quad V^{\prime}(m)=-j_{\mathrm{ES}}(m)$.
The instability of the flat surface $\left(j_{\mathrm{ES}}^{\prime}(0)>0\right)$ means that the potential $V(m)$ has a maximum in $m=0\left(V^{\prime \prime}(0)<0\right)$. Contiguous regions of increasing and opposite slope are formed. The usual phase-ordering process is obtained when $V(m)$ has the classical double-well form: $V(m)=-(\nu / 2) m^{2}+\left(\nu / 4 m_{0}^{2}\right) m^{4}$, corresponding to a current $j_{\mathrm{ES}}=\nu m\left(1-m^{2} / m_{0}^{2}\right)$. After the slope has attained a fraction of m_{0} the dynamics enters in the nonlinear regime: the wavelength L of the profile increases in time (coarsening process) and the slope saturates to the constant values $\pm m_{0}$. The coarsening law is known to be logarithmic [5] ($\left.L(t) \sim \ln t\right)$ in the absence of shot noise and a power law [6] $\left(L(t) \sim t^{1 / 3}\right)$ in the presence of it.

The aim of this paper is to analyse the deterministic $(\delta F(x, t) \equiv 0)$ growth process when $V(m)$ has no minima, corresponding to the absence of zeros at finite slopes in the current j_{ES}. We will consider the class of currents defined by

$$
\begin{equation*}
j_{\mathrm{ES}}=\frac{v m}{\left(1+\ell^{2} m^{2}\right)^{\alpha}} \quad \text { with } \quad \alpha \geqslant 1 \tag{6}
\end{equation*}
$$

and the corresponding models will be termed α models.
Model 1 has been studied numerically by Hunt et al [7] and they found a coarsening exponent $n \approx 0.22\left(L(t) \sim t^{n}\right)$ which seems not to depend on the noise strength (L M Sander, private communication). α models without noise have been studied analytically by Golubović [8] through scaling arguments and he finds $n=\frac{1}{4}$ irrespectively of α. Finally, qualitative considerations based on noise effects [9] give $n=1 /(2 / \alpha+3)$, i.e. $n=\frac{1}{5}$ for model 1.

Our analytical approach is based on the linear stability analysis of the stationary configurations $j[m(x)] \equiv 0$. In this way, one can find the coarsening exponent n through the determination of the lowest eigenvalue of the operator $\left(-\partial_{x}^{2}\right) \hat{H}$, where \hat{H} is the Hamiltonian corresponding to a particle in a periodic potential [5].

Before proceeding, we render adimensional the growth equation by rescaling x with $1 / \bar{q}$, t with t^{*} and z with $1 / \bar{q} \ell$:

$$
\begin{equation*}
\partial_{t} z=-\partial_{x} j \quad j=m^{\prime \prime}+\frac{m}{\left(1+m^{2}\right)^{\alpha}} \tag{7}
\end{equation*}
$$

Stationary configurations are the solutions of the differential equation $j[m(x)]=m^{\prime \prime}+$ $j_{\mathrm{ES}}(m) \equiv 0$. Therefore, they correspond to the periodic orbits of a particle in the potential $-V(m)=-\left[\frac{1}{2}(\alpha-1)\right]\left(1+m^{2}\right)^{1-\alpha}$ for $\alpha>1$ and in the potential $-V(m)=\left(\frac{1}{2}\right) \ln \left(1+m^{2}\right)$ for $\alpha=1$. In the former case the potential is upper bounded and the solution corresponding
to the boundary conditions $m \rightarrow \pm \infty$ when $x \rightarrow \pm \infty$ does exist, while it does not for $\alpha=1$ because the corresponding energy would be infinite. Stationary solutions may be labelled with their period, i.e. the wavelength L : $m_{L}(x)$.

Let us now perform a linear stability analysis around these stationary and periodic solutions: $m(x, t)=m_{L}(x)+\psi(x, t)$. It is easily found that

$$
\begin{equation*}
\partial_{t} \psi=\partial_{x}^{2}\left[-\psi^{\prime \prime}(x, t)+U_{L}(x) \psi\right] \tag{8}
\end{equation*}
$$

where $U_{L}(x) \equiv-j_{\text {ES }}^{\prime}\left(m_{L}(x)\right)$. By putting $\psi(x, t)=\phi(x) \exp (-\epsilon t)$ we obtain

$$
\begin{equation*}
\left(-\partial_{x}^{2}\right)\left[-\phi^{\prime \prime}(x)+U_{L}(x) \phi\right] \equiv D_{x} \hat{H} \phi(x)=\epsilon \phi \tag{9}
\end{equation*}
$$

Negative eigenvalues mean that $m_{L}(x)$ is linearly unstable and this induces the coarsening process; moreover, $\epsilon(L) \rightarrow 0^{-}$when $L \rightarrow \infty$. The dependence of the ground state (GS) energy on the distance L determines the timescale of the coarsening process: $t \sim 1 /|\epsilon(L)|$. For the moment we will assume $D_{x} \equiv 1$, i.e. we will consider the nonconserved model: $\partial_{t} m=-\delta \mathcal{F} / \delta m$.

First of all we observe that in the limit of large L the energy shift $\epsilon(L)$ for the periodic potential is equal (up to a numerical factor) to the shift for a single couple of potential wells \dagger. The solution of the problem is given [11] in terms of ϕ_{0} and ϕ_{1}, respectively the GS for the single well $U_{1}(x)$, centred in $x=L$, and for the double well $U_{2}(x)$, centred in $x= \pm L$. In fact, the Schrödinger equations are

$$
\begin{align*}
& -\phi_{0}^{\prime \prime}+U_{1} \phi_{0}=0 \tag{10a}\\
& -\phi_{1}^{\prime \prime}+U_{2} \phi_{1}=\epsilon \phi_{1} \tag{10b}
\end{align*}
$$

and by evaluating the quantity $\int_{0}^{\infty} \mathrm{d} x\left[\phi_{1} \times(10 a)-\phi_{0} \times(10 b)\right]=0$, we obtain

$$
\begin{equation*}
\phi_{1}(0) \phi_{0}^{\prime}(0)=-\epsilon \int_{0}^{\infty} \mathrm{d} x \phi_{0}(x) \phi_{1}(x) \tag{11}
\end{equation*}
$$

where we have made use of $U_{1}=U_{2}$ for $x>0$.
Before proceeding we must determine the asymptotic expressions of $\phi_{0}(x)$ and $\phi_{1}(x)$. The potential $U(x)=-j_{\mathrm{ES}}^{\prime}(m)$ is given, for α models, by

$$
\begin{equation*}
U(x)=\frac{(2 \alpha-1) m^{2}-1}{\left(1+m^{2}\right)^{\alpha+1}} \rightarrow \frac{(2 \alpha-1)}{m^{2 \alpha}} . \tag{12}
\end{equation*}
$$

The asymptotic behaviour of the single-mound profile is obtained by integrating the equation $m^{\prime \prime}(x)+j_{\mathrm{ES}}(m)=0$ and taking the limit $x \rightarrow \infty$:

$$
\begin{equation*}
\left(\frac{1}{2}\right)\left(m^{\prime}\right)^{2}-V(m)=0 \Rightarrow \frac{\mathrm{~d} m}{\mathrm{~d} x} \approx \frac{1}{\sqrt{\alpha-1}} \frac{1}{|m|^{\alpha-1}} \tag{13}
\end{equation*}
$$

The result $m^{\alpha}(x) \approx(\alpha / \sqrt{\alpha-1}) x$, when inserted in (12) gives

$$
\begin{equation*}
U(x) \approx \frac{(2 \alpha-1)(\alpha-1)}{\alpha^{2}} \frac{1}{x^{2}} \equiv \frac{a}{x^{2}} \tag{14}
\end{equation*}
$$

with a increasing between $a=0$ (for $\alpha=1$) and $a=2$ (for $\alpha=\infty$).
The solution of the Schrödinger equation $(10 a)$ for $U_{1}(x) \approx a /(x-L)^{2}$ gives a power-law decaying wavefunction $\left(\phi_{0}(x) \sim|x-L|^{-\beta}\right)$, with an exponent $\beta=(1-1 / \alpha)$.

If $\alpha \leqslant 2$ then $\beta \leqslant \frac{1}{2}$ and therefore the GS $\phi_{0}(x)$ of the single well is not a bound state, since $\int_{-\infty}^{\infty} \mathrm{d} x \phi_{0}^{2}(x)=\infty$. On the other hand, for $\alpha>2 \phi_{0}(x)$ is a bound state and $\phi_{1}(x)$ can \dagger If ϵ_{2} is the energy shift for a couple of wells, the shift ϵ_{n} for n wells is $\epsilon_{n}=2 \epsilon_{2}(1-1 / n)$.

Figure 1. Analytical (full curve) and numerical (crosses) values for the exponent $1 / n$ governing the asymptotic energy shift $\left|\epsilon_{2}\right| \sim 1 / L^{1 / n}$ (nonconserved model).
be approximated [11] with the expression $\phi_{1}(x)=\left[\phi_{0}(x)+\phi_{0}(-x)\right] / \sqrt{2}$. This way, from (11), we easily obtain the relation

$$
\begin{equation*}
\epsilon \simeq-2 \phi_{0}(0) \phi_{0}^{\prime}(0) \approx-L^{-(2 \beta+1)} \quad\left[\alpha>2 \text { and } D_{x}=1\right] \tag{15}
\end{equation*}
$$

If $\alpha<2$, we can put $\phi_{1}(x)=\left[\tilde{\phi}_{0}(x)+\tilde{\phi}_{0}(-x)\right] / \sqrt{2}$ where $\tilde{\phi}_{0}$ is a generalization of ϕ_{0} to a negative eigenvalue: $-\tilde{\phi}_{0}^{\prime \prime}(x)+\left(a / x^{2}\right) \tilde{\phi}_{0}(x)=\epsilon \tilde{\phi}_{0}(x)$. In fact, even if ϕ_{0} is not a bound state, ϕ_{1} is bounded, because the GS energy ϵ is strictly lower than $U_{2}(\pm \infty)=0$. The previous expression for ϕ_{1} may be used even if ϕ_{0} itself is bounded (i.e. for $\alpha>2$) and the result for the coarsening exponent does not change.

The asymptotic expression for $\tilde{\phi}_{0}$ is $\tilde{\phi}_{0}(x)=\sqrt{x} K_{\mu}(\sqrt{|\epsilon|} x)$ where K_{μ} is the modified Bessel function of order $\mu=\beta-\left(\frac{1}{2}\right)$. The function $\tilde{\phi}_{0}$ decays as a power law ($\tilde{\phi}_{0}(x) \approx$ $\left.|\epsilon|^{-\beta / 2-1 / 4} x^{-\beta}\right)$ if $a / x^{2} \gg|\epsilon|$ and exponentially $\left(\tilde{\phi}_{0}(x) \approx|\epsilon|^{-1 / 4} \exp (-\sqrt{|\epsilon|} x)\right.$) in the opposite limit, $a / x^{2} \ll|\epsilon|$. Equation (11) now gives us

$$
\begin{equation*}
\epsilon \int_{0}^{\infty} \mathrm{d} x \phi_{0}(x) \tilde{\phi}_{0}(x)=-2 \tilde{\phi}_{0}(0) \phi_{0}^{\prime}(0) \quad\left[\alpha \leqslant 2 \text { and } D_{x}=1\right] \tag{16}
\end{equation*}
$$

where $\tilde{\phi}_{0}(x)$ depends on ϵ. Note that the integral I on the left-hand side does converge even if ϕ_{0} is not a bound state.

The evaluation of the two sides of (16) is a bit lengthy and we report here the result only: $|\epsilon| \ln (1 /|\epsilon|) \sim 1 / L^{2}$ if $\alpha=2$ and $|\epsilon| \sim 1 / L^{2}$ if $1<\alpha<2$. In figure 1 we compare the analytical results for the exponent characterizing the energy shift $|\epsilon(L)| \sim L^{-1 / n}$ with those obtained through its direct numerical evaluation \dagger and the agreement is very good.

Therefore, for the nonconserved model we can conclude that
(nonconserved) $\quad n=\frac{1}{2} \quad(1<\alpha \leqslant 2) \quad$ and $\quad n=\frac{1}{3-2 / \alpha} \quad(\alpha>2)$
with a logarithmic correction for $\alpha=2\left(L \sim(t / \ln t)^{1 / 2}\right)$.
The reason why the coarsening exponent n keeps constant for $\alpha<2$ is the following: if $\alpha>2$ the single-well wavefunction is a bound state, the integral I is a constant while the 'superposition' between $\phi_{0}(x)$ and $\phi_{0}(-x)$ (that is to say the right-hand side of (16)) decreases at increasing α, which implies a decreasing n. Conversely, when $\alpha<2$ the integral
\dagger We have considered the single-well potential $U(x)=-E_{0}$ for $|x|<1$ and $U(x)=a / x^{2}$ for $|x|>1$, where $E_{0}(a)$ is chosen so as to provide a zero GS energy. Afterwards the energy ϵ_{2} of the double well problem may be determined by joining the solutions of the Schrödinger equation in each separate 'piece' of the potential $U_{2}(x)$.

Figure 2. Coarsening exponent n for the conserved model. In the inset we enlarge the small- α region. The full curve is the analytical result (18). Points are the exponents found by integrating numerically (7) for a system size $M=1024$ (spatial resolution $\Delta x=0.25$) and a total time $400000<T<1600000$ (time step: $\Delta t=0.05$). A few tests have also been done with a smaller time step ($\Delta t=$ 0.025) and longer chains ($M=$ 2048-4096), obtaining consistent results. Bars indicate the numerical fit errors.
I becomes α-dependent and decreases with α : this dependence counterbalances the reduction of the right-hand side of (16).

For the conserved growth model, $D_{x}=-\partial_{x}^{2}$ and (11) must be replaced by a more complicated expression. It has not been possible to carry out a rigorous calculation because [$\phi_{1} \times D_{x} \hat{H} \phi_{0}-\phi_{0} \times D_{x} \hat{H} \phi_{1}$] is no longer integrable. Nonetheless, there are strong indications that the right-hand sides of (15), (16) acquire a factor L^{-2} : the origin of this scaling factor is that $\phi_{0}(x)$ has a power-like behaviour (and therefore derivation corresponds to dividing by x) and also that $U(x) \sim x^{-2}$. Furthermore, since we need the single-well wavefunction, corresponding to a zero energy, a solution of the Schrödinger equation $\hat{H} \phi(x)=0$ is also solution of $D_{x} \hat{H} \phi(x)=0$.

As a consequence of such a factor, the coarsening exponent for the conserved case is easily obtained from the nonconserved one: $(1 / n) \rightarrow[(1 / n)+2]$. Therefore,
(conserved) $\quad n=\frac{1}{4} \quad(1<\alpha \leqslant 2) \quad$ and $\quad n=\frac{1}{5-2 / \alpha} \quad(\alpha>2)$.
In order to check numerically the validity of the results reported in (18) and therefore the dependence of the coarsening exponent n on the parameter α, detailed numerical simulations have been performed. In particular, we have numerically integrated equation (7) by employing a pseudospectral time-splitting code \dagger.

The values of $L(t)$, whose $\log -\log$ plot gives the exponent n, are evaluated through the power spectrum (PS) of $z(x, t)$: the weighted average of the wavevectors corresponding to the most relevant components of the PS is $2 \pi / L(t)$. A different method using the spatial correlation function gives consistent results. In figure 2 , the numerical findings for $n(\alpha)$ by direct integration of (7) are shown together with the theoretical expression (18) and a good agreement is found.

In conclusion, we have found the analytic expression for the coarsening exponents $n(\alpha)$, both for the nonconserved model (17) and for the conserved one (growth model), (18). Coarsening varies with α and it is not logarithmic (i.e. $n=0$) even for $\alpha=\infty$.
\dagger The algorithm here employed is analogous to the leapfrog scheme introduced in [10] for the integration of the complex Ginzburg-Landau equation (CGLE). Here the integration of the nonlinear term cannot be treated analytically as for the CGLE, so we resort to a second-order Adams-Bashford scheme. A detailed discussion of these types of algorithms can be found in [12].

We have greatly benefited from useful discussions with several colleagues: A Crisanti, C Godreche, J Krug, M Moraldi, W Strunz and S Taddei. PP gratefully acknowledges financial support from the Alexander von Humboldt Foundation.

References

[1] Kyuno K and Ehrlich G 1997 Surf. Sci. 383 L766
[2] Politi P and Villain J 1997 Surface Diffusion: Atomistic and Collective Processes ed M C Tringides (Dordrecht: Kluwer)
[3] Villain J 1991 J. Physique I 119
[4] Politi P, Grenet G, Marty A, Ponchet A and Villain J 2000 Phys. Rep. 324271
[5] Langer J S 1971 Ann. Phys. 6553
[6] Kawasaki K and Ohta T 1982 Physica A 116573
Kawakatsu T and Munakata T 1985 Prog. Theor. Phys. 7411
[7] Hunt A W, Orme C, Williams D R M, Orr B G and Sander L M 1994 Europhys. Lett. 27611
[8] Golubović L 1997 Phys. Rev. Lett. 7890
[9] Krug J 1997 Nonequilibrium Statistical Mechanics in One Dimension ed V Privman (Cambridge: Cambridge University Press)
Lei-Han Tang, Šmilauer P and Vvedensky D D 1998 Eur. J. Phys. B 2409
[10] Goldmann D and Sirovich L 1995 Q. Appl. Math. 53315
[11] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon) section 50, problem 3
[12] Nitti M, Torcini A and Ruffo S 1999 Int. J. Mod. Phys. C 101039

[^0]: * Dedicated to the Peanuts cartoon strip on the occasion of its 50th birthday.

